Numerical studies on Boussinesq-type equations via a split-step Fourier method

نویسندگان

  • Linghua Kong
  • Lan Wang
چکیده

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Boussinesq-type nonlinear wave equations with dispersive terms are solved via split-step Fourier methods. We decompose the equations into linear and nonlinear parts, then solve them orderly. The linear part can be projected into phase space by a Fourier transformation, and resulting in a variable separable ordinary differential system, which can be integrated exactly. Next, by an invert Fourier transformation, the classical explicit fourth-order Runge–Kutta method is adopted to solve the nonlinear subproblem. To examine the numerical accuracy and efficiency of the method, we compare the numerical solutions with exact solitary wave solutions. Additionally, various initial-value problems for all the listed Boussinesq-type system are studied numerically. In the study, we can observe that sech 2-type waves for KdV-BBM system will split into several solitons, which is a very interesting physical phenomenon. The interaction between solitons, including overtaking and head-on collisions, is also simulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

Parallel Numerical Methods for Solving Nonlinear Evolution Equations

Nonlinear evolution equations are of tremendous interest in both theory and applications. In this talk we introduce parallel algorithms for numerical simulations of CMKdV, NLS and and CNLS equations in 1+1 and 1+2 dimensions. The parallel methods are implemented on multiprocessor system. Numerical experiments have shown that these methods give accurate results and considerable speedup. This tal...

متن کامل

A numerical study of the long wave-short wave interaction equations

Two numerical methods are presented for the periodic initial-value problem of the long wave–short wave interaction equations describing the interaction between one long longitudinal wave and two short transverse waves propagating in a generalized elastic medium. The first one is the relaxation method, which is implicit with second-order accuracy in both space and time. The second one is the spl...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2010